Game-Tree Search over High-Level Game States in RTS Games

نویسندگان

  • Alberto Uriarte
  • Santiago Ontañón
چکیده

From an AI point of view, Real-Time Strategy (RTS) games are hard because they have enormous state spaces, they are real-time and partially observable. In this paper, we present an approach to deploy gametree search in RTS games by using game state abstraction. We propose a high-level abstract representation of the game state, that significantly reduces the branching factor when used for game-tree search algorithms. Using this high-level representation, we evaluate versions of alpha-beta search and of Monte Carlo Tree Search (MCTS). We present experiments in the context of StarCraft showing promising results in dealing with the large branching factors present in RTS games.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Level Representations for Game-Tree Search in RTS Games

From an AI point of view, Real-Time Strategy (RTS) games are hard because they have enormous state spaces, they are real-time and partially observable. In this paper, we explore an approach to deploy gametree search in RTS games by using game state abstraction, and explore the effect of using different abstractions over the game state. Different abstractions capture different parts of the game ...

متن کامل

High-level Representations for Game-Tree Search in RTS Games

From an AI point of view, Real-Time Strategy (RTS) games are hard because they have enormous state spaces, they are real-time and partially observable. In this paper, we explore an approach to deploy gametree search in RTS games by using game state abstraction, and explore the effect of using different abstractions over the game state. Different abstractions capture different parts of the game ...

متن کامل

Combining Strategic Learning with Tactical Search in Real-Time Strategy Games

A commonly used technique for managing AI complexity in real-time strategy (RTS) games is to use action and/or state abstractions. High-level abstractions can often lead to goodions. High-level abstractions can often lead to good strategic decision making, but tactical decision quality may suffer due to lost details. A competing method is to sample the search space which often leads to good tac...

متن کامل

Experiments with Game Tree Search in Real-Time Strategy Games

Game tree search algorithms such as minimax have been used with enormous success in turn-based adversarial games such as Chess or Checkers. However, such algorithms cannot be directly applied to real-time strategy (RTS) games because a number of reasons. For example, minimax assumes a turn-taking game mechanics, not present in RTS games. In this paper we present RTMM, a real-time variant of the...

متن کامل

Automatic Learning of Combat Models for RTS Games

Game tree search algorithms, such as Monte Carlo Tree Search (MCTS), require access to a forward model (or “simulator”) of the game at hand. However, in some games such forward model is not readily available. In this paper we address the problem of automatically learning forward models (more specifically, combats models) for two-player attrition games. We report experiments comparing several ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014